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Investigations of the Richtmyer–Meshkov instability carried out in shock tubes have
traditionally used membranes to separate the two gases. The use of membranes, in
addition to introducing other experimental difficulties, impedes the use of advanced
visualization techniques such as planar laser-induced fluorescence (PLIF). Jones &
Jacobs (1997) recently developed a new technique by which a perturbed, membrane-
free gas–gas interface can be created in a shock tube. The gases enter the shock
tube from opposite ends and exit through two small slots on opposite sides of
the test section, forming a stagnation point flow at the interface location. A gentle
rocking motion of the shock tube then provides the initial perturbation in the form
of a standing wave. The original investigation using this technique utilized dense
fog seeding for visualization, which allowed large-scale effects to be observed, but
was incapable of resolving smaller-scale features. PLIF visualization is used in the
present study to investigate the instability generated by two incident shock strengths
(Ms = 1.11 and 1.21), yielding very clear digital images of the flow. Early-time growth
rate measurements obtained from these experiments are found to be in excellent
agreement with incompressible linear stability theory (appropriately adjusted for a
diffuse interface). Very good agreement is also found between the late-time amplitude
measurements and the nonlinear models of Zhang & Sohn (1997) and Sadot et al.
(1998). Comparison of images from the Ms = 1.11 and 1.21 sequences reveals a
significant increase in the amount of turbulent mixing in the higher-Mach-number
experiments, suggesting that a mixing transition has occurred.

1. Introduction
Richtmyer–Meshkov (RM) instability occurs when an interface separating fluids

of different densities is impulsively accelerated, such as by the passage of a shock
wave over an interface between two dissimilar gases (Richtmyer 1960; Meshkov
1969). RM instability is closely related to the well-known Rayleigh–Taylor instability
that develops on an interface under constant acceleration such as produced by the
suspension of a heavy fluid over a lighter one in the Earth’s gravitational field
(Rayleigh 1883; Taylor 1950). Therefore, RM instability is often referred to as
impulsive or shock-induced Rayleigh–Taylor instability.

The presence of RM instability has been found to be of importance to a variety of
scientific disciplines. In astrophysics, significant fluid mixing in a supernova has been
directly attributed to RM instability (Arnett et al. 1989). In inertial confinement fusion
the RM instability of the impulsively accelerated shell containing the deuterium-
tritium fuel limits the compression of the fuel. Thus, RM instability represents
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a significant obstacle to achieving a productive fusion reaction (Lindl, McCrory
& Campbell 1992). The fundamental mechanism in RM instability has also been
considered to be of importance to enhancing mixing in supersonic combustion (Yang,
Kubota & Zukoski 1993).

Taylor (1950) was first to study the growth of perturbations to a flat interface
between two fluids of different densities under constant acceleration (gravity) using
linear stability theory. Richtmyer (1960), a decade later, used Taylor’s results as the
basis for his similar analysis of RM instability in which he modelled the shock
interaction with an interface as the impulsive acceleration of two incompressible
fluids. Thus, Richtmyer followed Taylor’s formulation, modelling gravity as a Dirac
delta function, and found the growth rate of the impulsively accelerated instability to
be given by

da

dt
= kAVa0, (1)

where V is the interface velocity, k = 2π/λ is the wavenumber, a is the amplitude
(with a0 being its initial value) and A is the Atwood number defined as

A =
ρ2 − ρ1

ρ2 + ρ1

,

where ρ1 and ρ2 are the densities of the gases above and below the interface. Unlike
Rayleigh–Taylor instability, which grows exponentially with time when the amplitude
is sufficiently small and occurs only when the acceleration is directed from the
lighter fluid into the heavier one, RM instability grows at a constant rate in the
small-amplitude limit and will develop regardless of the direction that the incident
shock travels. When the shock wave passes from the lighter into the heavier fluid
the impulsive acceleration has similar orientation to that producing Rayleigh–Taylor
instability. Thus the amplitude increases at a constant rate. Conversely, when the
shock wave is oppositely directed the amplitude first decreases until it passes through
zero, after which it emerges as a growing waveform that has been shifted in phase
by 180◦. Note that Richtmyer only considered the light-to-heavy configuration even
though his derived result (1) applies equally to both. The heavy-to-light configuration
was subsequently introduced by Meshkov (1969).

The linear growth stage described by Richtmyer’s result lasts as long as the
perturbation amplitude is sufficiently small (typically as long as ka < 1). When the
amplitude becomes comparable to the wavelength, the growth rate decreases owing
to the influence of the nonlinearity of the governing equations. The effects of weak
nonlinearity can be incorporated by developing a solution in the form of an asymptotic
expansion using the perturbation amplitude as the small parameter (Haan 1991).
These solutions, however, have the weakness that when truncated they produce
results that quickly diverge from the exact solution when the amplitude reaches
moderate size. Zhang & Sohn (1997) have found a solution to this problem by
posing their series solution as a Padé approximant which significantly extends its
validity. One shortcoming of Zhang & Sohn’s solution is that it does not possess the
generally accepted asymptotic behaviour that the growth rate decays as 1/t as time,
t, approaches infinity. This weakness has been addressed by Sadot et al. (1998) who
present a model that captures the initial weakly nonlinear behaviour yet also provides
the correct late-time asymptotic form.

The impulsive acceleration in RM instability is generally produced by the passage
of a shock wave over the interface. Thus the most common method for generating
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RM instability in the laboratory is to create a boundary between two gases in a
shock tube. Early shock-tube-driven RM experiments utilized a physical barrier to
initially separate the two gases in order to prevent their mixing. However, this barrier
subsequently introduced other problems. The earliest such method, used by Meshkov
and others (Aleshin et al. 1988; Vassilenko et al. 1992; Benjamin 1992), employed
a thin membrane pre-shaped into a sinusoid and placed between the two gases to
separate them and provide the initial perturbation. This membrane is shattered by
the incident shock wave. However, the pieces of the membrane become incorpor-
ated into the fluid flow, potentially affecting the development of the instability. The
presence of the membrane fragments in the flow also impedes the use of advanced
fluid visualization techniques such as planar laser-induced fluorescence (PLIF)
(Jacobs 1993), planar Rayleigh scattering (Budzinski, Benjamin & Jacobs 1994) and
particle image velocimetry (Rightley et al. 1999). Furthermore, this method often
produces initial growth rate measurements that are significantly less than Richt-
myer’s theoretical prediction, typically by a factor of two or more. Another earlier
method for interface formation uses a thin plate to separate the fluids (Brouilette
& Sturtevant 1994; Cavailler et al. 1990; Bonazza & Sturtevant 1996), the wake
of which, when extracted prior to shock tube firing, provides a pseudo-sinusoidal
interface perturbation. The results of these experiments are limited by the fact that
the initial perturbation is uncontrolled, non-uniform and often irreproducible. As is
characteristic of all fluid instabilities, the initial state of the system dictates future
behaviour, hence any variation in initial conditions makes it difficult to compare
experimental results from experiment to experiment. The interfaces created by this
method are also very diffuse, having thicknesses equalling or exceeding the per-
turbation wavelength, which significantly slows instability growth. More recently,
experiments studying the RM instability of two nearby interfaces utilizing a ‘gas
curtain’ (Jacobs et al. 1993, 1995; Budzinski et al. 1994; Rightley et al. 1999) have
successfully produced membrane-less experiments which utilize advanced diagnos-
tic techniques. However, the dynamics of the two-interface system are significantly
more complex than the more fundamental and practically relevant single-interface
configuration.

A novel solution to the problem of interface generation and perturbation was
devised by Jones & Jacobs (1997). A vertical shock tube was manufactured with
small horizontal slots located on two opposite walls. The gases entered the shock
tube from opposite ends of the driven section and exited through the slots, forming a
stagnation point flow at the interface location. A reproducible perturbation was then
given to the interface by gently oscillating the shock tube at the appropriate frequency,
generating a standing wave. This investigation made use of a dense fog seeded into
one of the gases to visualize the flow. The dense fog allowed large-scale effects to be
observed, but obscured the smaller-scale features of the flow. This shortcoming has
prompted the desire to implement an alternative imaging technique to allow a more
detailed examination of the instability. Low-density fog seeding has been shown to
be effective in visualizing small-scale features in gas curtain experiments (Rightley et
al. 1999). However, even a fog consisting of sub-micron size droplets diffuses at a rate
orders of magnitude less than the gas constituents which it is intended to track. In
contrast, PLIF utilizes a fluorescent gas to track gas constituents. Thus it is inherently
better suited as a diagnostic for mixing. When properly corrected, the captured PLIF
images have pixel values that reflect the concentration of the fluorescing tracer, and
hence the concentration of the traced gas, which can be used to quantify the degree
of mixing that has occurred.
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Figure 1. The shock tube and PLIF system. SF6 and an air–acetone mixture flow into the shock
tube from plenums located below and above the test section. The stagnation point flow at the slot
location creates the interface (b), which is given a sinusoidal perturbation by rocking the shock tube
using a stepper motor and crank mechanism. Pressure transducers located above the test section
sense the shock wave and trigger the laser pulse which produces a light sheet that illuminates the
air–acetone mixture.

2. Experimental setup
The experiments utilize a vertical shock tube (figure 1a) which is 4.3 m long and

has a 1 m long, 10.2 cm diameter driver, and a 3.3 m long driven section with a 8.9 cm
square cross-section. The driver is made of glass fibre wound round epoxy pipe, and
the upper portion of the driven section is made of extruded fibreglass square structural
tubing. Three walls of the test section are made of flat black anodized aluminium
while the fourth wall is transparent acrylic sheet to allow full optical access for flow
visualization.

An interface is formed in the shock tube test section (Jones & Jacobs 1997)
by introducing a relatively light gas (air) through a plenum located at the top of
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the driven section and a heavier gas (SF6), through a similar plenum located at
the bottom of the test section. The gases meet and are allowed to exit the shock
tube through slots located near the upper end of the test section, thus forming
a stagnation point flow at the interface location (figure 1b). The thickness of the
resulting interface is a function of the flow rates of the two gases. By examining
digital images captured over a wide range of flow rates, it was determined that equal
flow rates of 6 l min−1 were optimal in that a relatively thin (≈ 5 mm) interface was
obtained at minimal gas expenditure. A nominally sinusoidal perturbation is given
to the resulting interface by gently rocking the shock tube on its pivot pins located near
the top of the driven section using a small crank driven by a stepper motor running at
the appropriate frequency to create a standing wave. A 0.5 mm oscillation amplitude
was used in this study which generated a wave amplitude of approximately 2 mm.
While it is possible to generate larger initial perturbation amplitudes, it was found that
excessively large shock tube oscillations produced an asymmetrical interface. Thus
smaller-amplitude perturbations, producing waveforms more sinusoidal in shape,
were used. The initial conditions in this experiment are not quiescent. The initial
perturbation is that of an oscillating standing wave superimposed onto the constant
flow of the two gases toward the interface. The 3.6 Hz rocking motion produces
sinusoidal wave motion with a velocity amplitude of 5 cm s−1. However, the firing
of the shock tube is synchronized with the wave motion such that this velocity is
at its minimum. Therefore, the oscillatory velocity perturbation is negligible at the
time of shock interaction. The working gases flow down the tube at a velocity of
1.2 cm s−1 and exit through the slots. Thus, the flow field near the interface resembles
a stagnation point flow. However, it should be stressed that the velocity of this motion
is negligible when compared with that resulting from shock interaction which is at
least 4 m s−1.

PLIF flow visualization was implemented in these experiments by seeding the light
gas with acetone vapour. Acetone is relatively harmless, inexpensive, readily available
and fluoresces in the visible spectrum when illuminated with light in the 225–320 nm
range making it an excellent candidate for use as a tracer in this application (Lozano,
Yip & Hanson 1992). However, because the excitation wavelengths lie in the UV
spectrum, it was necessary to use a fused silica window to allow the laser light to
enter the shock tube. Seeding was accomplished by passing the air flow through a
fritted glass cylinder submerged in a canister filled with acetone. Two of these acetone
canisters were used in series, the first of which was heated to ensure super-saturation
at room temperature. The second canister, at room temperature, served to recover
some of the excess acetone and partially cool the gas mixture, which subsequently
flowed through copper coils submerged in a cold water bath at constant temperature.
The seeded mixture exiting the coils was then of reproducible density, and slightly
undersaturated at room temperature, helping to ensure experimental consistency while
avoiding potential equipment damage due to unwanted acetone condensation. The
resulting air–acetone mixture was thus entirely free of liquid-phase acetone and had
an acetone volume fraction of approximately 25%.

The fourth harmonic (266 nm) of a pulsed Nd:YAG laser was used to illuminate the
air–acetone mixture for PLIF visualization. The laser’s 70 mJ output pulse was passed
through circular and cylindrical lenses and reflected upward through the fused silica
window at the lower end of the shock tube. The result was a diverging light sheet that
momentarily illuminated a thin (≈ 1 mm) cross-section of the air–acetone mixture.
The brief fluorescence of the acetone tracer was captured on a thermoelectrically
cooled CCD camera with a f/1.2 50 mm lens. The slow, 7 s, cycle time of the cooled
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CCD camera, and the 10 Hz pulse rate of the laser both limited data acquisition to
one image per shock-tube firing.

The puncturing of a polypropylene diaphragm placed between the pressurized
driver and driven section of the shock tube generated a weak shock wave that
travelled down the tube and through the perturbed interface, initiating the onset of
the instability. The coordination of the output of the pulsed laser with the firing of the
shock tube was necessary in order to capture an image of the interface as it travelled
down the test section and past the camera. Electronic timing circuitry was built to
fire the laser flashlamp at the appropriate frequency, sense the closing of a manual
firing switch, then wait for the appropriate time in the shaking cycle of the shock
tube before closing the circuit that powers the solenoid responsible for puncturing
the diaphragm. Two pressure transducers, mounted on the wall of the shock-tube
driven section, served the dual purpose of triggering a digital delay generator that
subsequently triggered the laser’s Q-switch, and also triggering separate channels of a
digital timer that was used to measure the shock speed (and hence the Mach number)
and calculate its time of arrival at the interface. In this way, the development time of
the instability could be chosen a priori (within about 10 µs) and the camera could be
placed to view the appropriate portion of the test section to capture the fluorescent
signal from the passing interface.

3. Image correction
Figure 2(a) shows an uncorrected raw PLIF image as acquired by the CCD camera.

The instability is clearly evident in this image. However, the effects of non-uniform
laser illumination and Beer’s law attenuation are also readily apparent. It is possible to
improve the raw images considerably by correcting for laser divergence, attenuation,
and laser beam profile to yield images with brightness values that more closely
represent the concentration of the PLIF tracer, and hence provide an approximation
to the concentration of the traced gas. This was accomplished using a correction
routine that marched along individual light rays integrating Beer’s law.

The differential form of the Beer–Lambert law is

dI = −εC0ξIds, (2)

where I is the light ray intensity, ε is the extinction coefficient, C0 is the acetone con-
centration far above the interface, ξ = C/C0 is the normalized acetone concentration
and s is distance along a light ray. For any given pixel in an image, the recorded
intensity value, i, is given by

i = gC0ξI, (3)

where g is a constant associated with the collection efficiency of the camera and lens
system. Combining (2) and (3) and integrating along a light ray gives

I − I0 = − ε
g

∫
ids. (4)

Finally, combining (3) and (4), yields

ξ =
i

i0 − εC0

∫
ids

, (5)

which gives the acetone concentration as a function of other measurable quantities.
Equation (5) was used to obtain the tracer concentration field where the integration
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(a) (b)

Figure 2. The uncorrected image in (a) is the raw data acquired by the camera, the brightness of
which is a function of the acetone concentration and available laser light. Beer’s law attenuation
is evident, as is the Gaussian-like laser sheet intensity distribution. The corrected image in (b)
has brightness that is proportional to the acetone concentration, hence brightness represents the
presence of the lighter gas mixture.

was carried out along light rays starting from the top of the image, which was
assumed to contain uniformly seeded gas of concentration, ξ = 1. The ray paths were
determined by first identifying the coordinates of two points along each of several
different rays spaced across the diverging laser sheet. From these points the path of
the ray that passes through an arbitrary pixel can be calculated. Thus for any given
pixel an array of values representing the recorded intensity i(s) along the light ray that
illuminates that pixel can be assembled. Having assembled such a vector for each pixel
in the image, these vectors are then integrated to yield the tracer concentration field.
The product, εC0, was found by fitting an exponential function to ray vectors above
the interface, where the acetone concentration is assumed to be uniform. Figure 2(b)
shows the corrected version of figure 2(a) where now the pixel intensity represents
the actual acetone seeding concentration.

4. Results and discussion
Experiments were conducted for two incident shock wave Mach numbers, Ms =

1.11 ± 0.01 and 1.21 ± 0.02, and images were captured at times up to 11 ms after
shock arrival, with several images captured at each time level. All experiments had
a pre-shock Atwood number of 0.604. Figure 3 is a wave diagram of the Ms = 1.11
experiments and figure 4 is an equivalent diagram for the Ms = 1.21 experiments. Note
that a weak expansion wave is generated by the incident shock when it passes over
the slots. This interaction subsequently results in a reduction in the interface velocity
and the strength of the transmitted shock wave. In both conditions the interface is
reaccelerated at t ≈ 6 ms by a combination of the reflected expansion wave generated
by the diaphragm rupture and the reflected incident shock wave. However, in both
conditions it is the reflected expansion that arrives at the interface first.

Figures 5 and 6 contain representative images from the experiments conducted
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Figure 3. An x, t diagram for the Ms = 1.11 experiments.
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Figure 4. An x, t diagram for the Ms = 1.21 experiments.

at Ms = 1.11 and 1.21, respectively, arranged to form a time sequence. The images
in these sequences are displayed in false colour with red representing the lowest
fluorescent intensity and blue the highest. As previously mentioned, only one image
can be acquired per experiment, consequently figures 5 and 6 were assembled from 18
and 20 separate experiments, respectively. The first image in figure 5 was taken slightly
before the arrival of the shock wave and the second image was taken immediately
after shock interaction (at t = 18 µs). Note that at this time the shock wave is just
3 mm below the interface and would be visible in the picture if it were not for
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the fact that the lower heavy gas contains no tracer. Both the initial amplitude
and interface thickness of the pre-shock perturbation are noticeably reduced by the
compression of the incident shock wave. After the interface is impulsively accelerated,
the instability grows quickly and remains approximately sinusoidal in shape. However,
as the amplitude becomes similar in size to the wavelength, the shape develops
asymmetry, with the wave crests thinning into spikes and the troughs broadening into
bubbles. Note that the asymmetry of the bubbles and spikes in these experiments is
due to the relatively large Atwood number (A ≈ 0.6). Other Richtmyer–Meshkov and
Rayleigh–Taylor investigations (Jacobs & Niederhaus 1997; Waddell, Niederhaus &
Jacobs 2001) using much lower-Atwood-number fluid systems exhibit nearly perfect
top-to-bottom symmetry.

Still later in time (t ≈ 4 ms) cusps appear that develop into mushroom-shaped
structures, indicating the formation of vortices. Note that vorticity is generated in
this flow by the interaction of the pressure gradient (∇p) in the shock wave with
the density gradient (∇ρ) at the fluid interface, as described by the two-dimensional
vorticity equation,

ρ
D

Dt

(
ω

ρ

)
=

1

ρ2
∇ρ× ∇p,

where ω is the vorticity vector, which in this case is directed normal to the plane of mo-
tion. This baroclinically generated vorticity is initially deposited in an approximately
sinusoidal distribution. However, as the instability develops it coalesces into vortices
via the mechanism that produces Kelvin–Helmholtz instability (Zabusky 1999). Note
that the interface begins its evolution in a relatively diffuse state. However, with time,
the straining motion induced by the vortex rollup stretches the interface, producing
a sharper density distribution except in the regions near the vortex centres. In these
regions the motion that produces the coalescence of the vorticity transports mixed
interface fluid, depositing it, along with the vorticity, in the vortex cores.

The interface experiences reacceleration in the opposite direction produced by the
interaction with the expansion wave that was generated by the diaphragm rupture
and had subsequently reflected off the top of the driver. The velocity change imparted
by this second interaction is approximately the same as that generated by the shock.
However, because the interface amplitude is much larger (and consequently that the
surface slopes are larger) in the second interaction, significantly more vorticity is
generated (Kotelnikov, Ray & Zabusky 2000). Most of this new vorticity has the
opposite sense to that originally deposited (its appearance being most evident in the
stems of the mushrooms, figure 5i ). As a result it causes the interface to invert and
change rapidly (figure 5j–o). The interface is accelerated a third time in this sequence
by the incident shock wave that has reflected off the bottom of the shock tube. This
shock passes over the interface, depositing new vorticity and producing a much more
complex and possibly turbulent flow.

The sequence produced by interaction with the Ms = 1.21 (figure 6) shock develops
similarly to Ms = 1.11 sequence. The principal difference between the two is that the
Ms = 1.21 sequence receives an impulsive acceleration that is approximately twice
as large as that of the Ms = 1.11 sequence. Thus, since it is the velocity change
that determines the instability growth rate, as given by Richtmyer’s result (1), the
development of the instability occurs approximately twice as fast. However, the arrival
of the expansion (and thus the beginning of reacceleration) occurs at approximately
the same time in both sequences. Thus, because the Ms = 1.21 sequence develops at
a much faster rate, it is much further developed at the time that the expansion wave
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Figure 5. Corrected PLIF images assembled to form a time sequence of the instability resulting from shock-acceleration by an Ms = 1.11 incident shock
wave. Frame (a) was taken slightly before the arrival of the shock wave. Times relative to the shock wave arrival for the other images are: (b) 0.018 ms,
(c) 0.607 ms, (d ) 1.212 ms, (e) 2.207 ms, ( f ) 3.217 ms, (g) 4.215 ms, (h) 5.204 ms, (i ) 6.221 ms, ( j ) 7.026 ms, (k ) 7.546 ms, (l ) 8.027 ms, (m) 8.535 ms,
(n) 8.804 ms, (o) 9.054 ms, (p) 9.555 ms, (q) 10.053 ms, (r) 10.558 ms.
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Figure 6. Corrected PLIF images assembled to form a time sequence of the instability resulting from shock-acceleration by an Ms = 1.21 incident shock
wave. Frame (a) was taken slightly before the arrival of the shock wave. Times relative to the shock wave arrival for the other images are: (b) 0.023 ms,
(c) 0.632 ms, (d ) 1.031 ms, (e) 1.478 ms, ( f ) 2.014 ms, (g) 2.502 ms, (h) 3.011 ms, (i ) 4.009 ms, ( j ) 5.015 ms, (k ) 6.006 ms, (l ) 7.005 ms, (m) 7.781 ms,
(n) 8.009 ms, (o) 8.499 ms, (p) 9.021 ms, (q) 9.524 ms, (r) 10.020 ms, (s) 10.519 ms, (t) 11.001 ms.
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arrives. As a result, the vortices observed in figure 6 are much further developed,
showing much more rollup, than their counterparts in figure 5. In addition, the
beginning of a secondary instability in the vortex cores is clearly evident in figure 6(k ).
Note that a similar instability has been observed in shock-accelerated heavy gas
cylinders (Jacobs 1993) and in incompressible RM experiments (Niederhaus 2000).

There are other noticeable differences between the Ms = 1.11 and Ms = 1.21 se-
quences besides their relative rates of development. The reflected expansion arrives in
the Ms = 1.21 sequence at approximately 5 ms and the reflected shock can be observed
to be passing over the interface in figure 6(m). These two sources add to produce a
dramatic increase in complexity similar to that observed in the Ms = 1.11 sequence.
However the transition is much more pronounced in figure 6. The later images of
figure 5 show a very complex interface shape indicating the beginnings of turbulence.
However there is very little mixed fluid present. The images taken at the latest times
in figure 6 show a substantial increase in the amount mixed fluid, giving little doubt
that a turbulent flow has been achieved.

The increase in the amount of mixed fluid produced in the higher Mach number
experiments is further illustrated in figure 7 which is a comparison of the histograms
of the concentration data of the last image from each of the displayed Ms = 1.11
and Ms = 1.21 sequences (figures 5r and 6t). The histogram of figure 5(r) shows two
large spikes corresponding to the two pure constituents with very little mixed fluid
in between. In contrast, the histogram of figure 6(t) shows a significant increase in
the number of pixels with concentrations between the two extremes indicating the
substantial presence of mixed fluid. The amount of mixed fluid is often quantified in
studies of mixing in turbulent shear layers by the mixed fluid thickness (Koochesfahani
& Dimotakis 1986) defined as

hm =
1

x2 − x1

∫ y2

y1

∫ x2

x1

ξm(ε) dx dy,

where

hm(ε) =

{
1 for ε < ξ < 1− ε
0 otherwise,

and ε is representative of the signal-to-noise ratio of the concentration measurements.
Figure 8 shows the development of hm for the data sequences of figures 5 and 6 where
ε = 0.1 and the domain of integration is the field of view in these images. One can see
that hm is very similar for the two sequences until interaction with the reflected waves
at t ≈ 6 ms. Afterwards, the Ms = 1.21 experiments show a very rapid growth in hm
while in the Ms = 1.11 sequence hm continues to grow at a rate approximately equal
to its initial value. Thus, despite the fact that the Ms = 1.11 instability has developed
some of the characteristics of turbulence, such as a random-like appearance and
increased sensitivity to initial conditions, the rate of production of mixed fluid has
not significantly changed, indicating that turbulence has not yet been achieved.
The changes observed in the comparisons of figures 5 and 6 are very similar to those
observed in studies of turbulent shear layers when PLIF images taken above and below
the mixing transition are compared (Breidenthal 1981; Koochesfahani & Dimotakis
1986; Dimotakis 2000). Thus, the increase in the incident shock Mach number appears
to have resulted in a mixing transition in this flow. Note that Rightley et al. (1999)
have observed a similar mixing transition in shock-accelerated gas curtain experiments.
However, it should be stressed that it is also possible that the Ms = 1.11 condition
may eventually experience a transition to turbulence given sufficient time to evolve.
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Figure 8. The development of the mixed fluid thickness for the data of figures 5 and 6:e, Ms = 1.11; �, Ms = 1.21.

4.1. Repeatability

The experiments were designed to maximize repeatability. The most important part
of this effort was the requirement that the firing of the shock tube be synchronized
with the shock tube oscillation so that the shock wave arrives at the interface at the
same point in the oscillation cycle for every experimental run. Nevertheless, a small
amount of run-to-run variation existed. The most prominent source of variation in
these experiments was the result of a small amount of timing jitter in the mechanical
puncturing of the diaphragm which caused the shock wave to arrive at slightly varying
times in the oscillation cycle and thus produced slight differences (approximately 10%)
in the amplitudes of the initial perturbations. When the initial amplitude is small, as it
is in the experiments reported here, these small variations will only result in a change
in the initial growth rate as given by (1). Therefore, the approximately 10% variation
observed in the initial amplitude will only result in a 10% variation in the rate of



128 B. D. Collins and J. W. Jacobs

(a) (b)

Figure 9. A comparison of two images taken at approximately the same time after shock interaction
showing the degree of repeatability in the experiments. Both were taken 5.01± 0.005 ms after shock
acceleration by a Ms = 1.21 shock wave. However, the two images appear to have been taken at
slightly different times, an outcome that can be attributed to small variations that exist in the initial
amplitudes of each run.

development of the instability. This effect is demonstrated in the two images shown
in figure 9 which were taken at essentially the same time after shock interaction from
two different experiments. The primary difference between the two pictures (which in
this case was chosen to be larger than that typically observed) is that they appear to
have been taken at slightly different stages in their development. Thus, the primary
result of the variation in the initial perturbations in these experiments was to produce
slight inconsistency in the apparent age of a particular image. This variation resulted
in an equivalent amount of scatter in measurements of the perturbation amplitude
described below.

4.2. Null experiments

In addition to experiments with single-mode sinusoidal initial perturbations, a small
number of experiments were performed with no intentional disturbance (i.e. with a
nominally flat initial interface) to determine whether there were appreciable unwanted
initial perturbations introduced to the system during the course of an experiment. If
the interface is initially perfectly flat then passing a shock wave through it should
in theory yield no change and the interface should remain flat for all time. To
test the experimental apparatus for the presence of unwanted initial perturbations,
which might, for example, be introduced by the method of interface creation, ‘null’
experiments were performed with the oscillation system turned off. Figure 10 shows
the result of one of these null experiments taken at t = 6.0 ms with a shock strength
of Ms = 1.11. Note that, except for the effects of the boundary layers visible along
the walls, the interface remains remarkably flat.

4.3. Amplitude and displacement measurements

Measurement of the displacement of the post-shock interface is important to quantify
the acceleration received by the system. The interface displacement was estimated by
averaging the distance travelled by the centremost peak and trough of each image,
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Figure 10. An image of an initially unperturbed interface 6.0 ms after it has been impulsively
accelerated by a Ms = 1.11 shock wave. The interface remains flat, indicating that there is no
appreciable initial perturbation produced by the method of interface generation.
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Figure 11. Measured interface displacement as a function of time with linear curve fits added to
the data: e, Ms = 1.11; �, Ms = 1.21.

relative to its initial position in the shock tube. Figure 11 is a plot of the interfacial
displacement as a function of time for the Ms = 1.11 and the Ms = 1.21 experiments.
Each curve contains data from approximately 50 separate runs. The data indicate
that the interface has a constant velocity up to the time it is reaccelerated by the
expansion wave. It is interesting that this is true despite the presence of the two open
slots in the test section. Theoretical values for the interface velocities were calculated
using a one-dimensional analysis assuming perfect gas behaviour and a non-ventilated
shock tube with the measured shock velocities. This calculation yielded an interface
velocity of 36.0 m s−1 for the Ms = 1.11 experiments and 64.2 m s−1 for the Ms = 1.21
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Figure 12. Measured amplitude as a function of time for all of the Ms = 1.11 experiments.

experiments. Both of these values differ slightly from the experimentally determined
values of 33.0 m s−1 and 60.6 m s−1, found by fitting lines to the data of figure 11. This
discrepancy is consistent with the presence of openings (the two slots) in the shock
tube.

The interfacial amplitude, defined as half the vertical distance between the top
of the centremost crest to the bottom of the centremost trough, is plotted as a
function of time for the Ms = 1.11 experiments in figure 12. The small amount of
scatter observed in this plot can be attributed to the slight variation of the initial
perturbation amplitude, as described above. The amplitude as observed in this plot
initially grows linearly and begins to deviate from linearity when the amplitude
becomes large. The constancy of the early-time growth rate is demonstrated in
figure 13 which shows amplitude measurements for the Ms = 1.11 experiments where
each data point represents an average over 5 measurements. The error bars in this plot
signify the 95% confidence intervals based on the statistics of these averages. Also
shown on this plot is a line fit to the data indicating a growth rate of 3.92 m s−1 with
a 95% confidence interval of ±0.23 m s−1. The similar measurement for the Ms = 1.21
experiments yields a growth rate of 6.28± 0.60 m s−1.

For the small initial amplitudes utilized in these experiments (wavenumber× initial
amplitude ≈ 0.2), one should expect the initial growth rate, i.e. the slope of the data
in the very early portion of figure 12 (up to t ≈ 1 ms), to be in good agreement with
that of linear stability theory. Recall that the instability of an impulsively accelerated
incompressible system was considered by Richtmyer (1960) who found the growth
rate to be given by (equation (1) in § 1)

da

dt
= kAVa0.

Richtmyer realized that the Atwood number and initial amplitude would both be
altered by the shock wave compression. To determine which amplitudes and Atwood
numbers should be used (pre-shock or post-shock), he compared numerical simu-
lations of a shock wave passing from a light to heavy fluid and concluded that
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Figure 13. Early-time amplitude for the Ms = 1.11 experiments. Each data point is an average of
measurements from five experiments.

using the post-shock values resulted in the best agreement, with a difference of
approximately 10% between computational and theoretical results.

Richtmyer’s linear stability solution assumes that the two fluids are separated by
a sharp, discontinuous interface, which is not representative of the somewhat diffuse
interface created in this experiment. Brouilette & Sturtevant (1994) addressed the
instability of a diffuse interface by extending the analysis of the Rayleigh–Taylor
instability performed by Duff, Harlow & Hirt (1962) and found the growth rate for
a Richtmyer–Meshkov diffuse interface system to be given by,

da

dt
=
kAV

ψ
a0, (6)

where ψ is a growth reduction factor that is determined as the eigenvalue of the
Sturm–Liouville boundary value problem

1

ρ

(
ρ

df

dy

)
−
(

1− ψ

kA

1

ρ

dρ

dy

)
k2f = 0,

f → 0 as y → ±∞.

 (7)

Note that ψ = 1 corresponds to a discontinuous interface with the value increasing
monotonically with increasing interface thickness. Equation (7) was solved numerically
assuming an error-function density distribution,

ρ = ρ1 +
ρ2 − ρ1

2
[1 + erf(

√
πy/δ)],

where the maximum slope thickness δ was estimated by fitting an equivalent expres-
sion to the measured tracer concentration distribution in the present experiments. The
error-function distribution is a suitable choice because it is the steady-state concen-
tration distribution produced at an interface between two gases experiencing constant
normal strain, a condition which approximates the flow field in the vicinity of the
interface in the present experiments well. In addition, this distribution provides a good
fit to the experimental data. Using the tracer concentration field to evaluate (7) makes
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Ms = 1.11 Ms = 1.21

Pre-shock Post-shock Pre-shock Post-shock

A 0.604 0.616 0.604 0.625
a0 2.29 mm 2.10 mm 1.83 mm 1.57 mm
ψ 1.204 1.132 1.17 1.08

da

dt
(computed) 4.02 m s−1 3.99 m s−1 6.07 m s−1 5.85 m s−1

da

dt
(measured) 3.92 m s−1 6.28 m s−1

Difference −2.6% −1.8% +3.3% +6.8%

Table 1. Parameter values and measurements for the experiments.

the assumption that the presence and concentration of the acetone tracer is equivalent
to the presence and concentration of the air–acetone mixture. Unfortunately, this is
not entirely accurate because the diffusion coefficients for air into SF6 and acetone
into SF6 are not the same. The diffusion coefficients of the three binary constituent
combinations, air–SF6, air–acetone and SF6–acetone, are 0.10, 0.11 and 0.05 cm2 s−1,
respectively. The relative similarity of these three values, noting that the width of the
diffusion zone is proportional to the square root of the diffusivity, supports the use
of the measured acetone distribution as an approximation for the density distribution
in the integration of (7).

Table 1 contains pre-shock and post-shock values of the Atwood number, the
initial perturbation amplitude, and the diffuse-interface correction factor, ψ. The
perturbation amplitudes are averaged values measured from PLIF images, and the
correction factor was computed as described above. The Atwood number was de-
termined from measured pre-shock gas densities with post-shock values computed
from the one-dimensional calculation. These parameter values were used along with
the measured interface velocities and wavenumbers to compute pre- and post-shock
estimates of the growth rate using the modified form of Richtmyer’s formula (6).
These computed growth rates are given in table 1 along with the measured values.
Note that the theoretical growth rate computed using the post-shock values provides
the best estimate for the Ms = 1.11 experiments. However, both pre- and post-shock
values provide very good agreement with the experimental measurement, differing in
the worst case by less than 3%, which is well within the ±6% experimental error
estimate. Conversely, the Ms = 1.21 results favour the pre-shock values, but again
both estimates lie very near the experimental measurement, in this case differing by
no more than 7%. It is somewhat unexpected that both of the Ms = 1.21 theoretical
predictions overestimate the measurement. Nevertheless, the differences are smaller
than the ±9.5% error estimate. It is notable that the growth rate estimates obtained
using the pre-shock and post-shock parameters yield surprisingly similar values. This
occurs because the shock compression decreases both the initial amplitude and the
interface thickness. Decreasing the amplitude results in a smaller growth rate, but
conversely, a decrease in the interface thickness produces an increase in the growth
rate. In this way, the two effects serve to offset each other.

Figure 14 is a plot of dimensionless amplitude relative to its initial value versus
a dimensionless time scale defined by the initial growth rate for both the Ms = 1.11
and Ms = 1.21 experiments. Note that the linear stability theory dictates that the
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amplitude should grow linearly with time as shown by the straight line in this plot.
Thus the curvature present in this amplitude plot is a result of the nonlinearity of the
instability. As mentioned above, Zhang & Sohn (1997) and Sadot et al. (1998) have
developed nonlinear models that they have shown to provide good agreement with
both experiments and computation. Zhang & Sohn’s result is based on their weakly
nonlinear asymptotic solution of the inviscid incompressible instability, which yields

v = v0[1− (a0k)v0kt+ (A2 − 1
2
)v2

0k
2t2 + O(a0k)

5], (8)

where v = (vb + vs)/2 is termed the overall growth rate (which is equal to da/dt in
the present study), v0 is its initial value, and vb,s are the individual bubble and spike
growth rates. Note that this asymptotic solution has the form of a power series, which
must be truncated in order to evaluate the solution. The truncated series yields good
agreement with the exact solution for only limited time and diverges very early in
the development when the amplitude becomes large, as can be observed in figure 14
which shows (8) truncated at second order. Understanding this difficulty Zhang &
Sohn posed their solution in the form of a Padé approximant,

v =
v0

1 + v0a0k2t+ max{0, a2
0k

2 − A2 + 1
2
}v2

0k
2t2
, (9)

which provides a much better behaved solution at late times, as can be observed in
figure 14. Even though (9) is based on the solution of the governing equations it lacks
the accepted long-time behaviour that the growth rate should decay as 1/t (Alon et
al. 1995; Jacobs & Sheeley 1996) which may explain why it appears to diverge from
the data at late times. Sadot et al.’s (1998) somewhat more complex model,

vb/s =
v0(1 + v0kt)

1 + (1± A)v0kt+ [(1± A)/(1 + A)](1/2πC)v2
0k

2t2
, (10)

captures the desired 1/t long-time dependence along with some agreement (up to first
order) with the weakly nonlinear solution. However, it contains free parameters which
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must be determined by comparison with experimental measurements. Sadot et al.
suggest that C = 1/3π for A > 0.5 and C → 1/2π when A→ 0. They found C = 1/3π
by analysing the motion of an array of two-dimensional bubbles of negligible density
(i.e. A = 1), and C = 1/2π by modelling RM instability in a nearly uniform density
distribution (i.e. A = 0) by assuming that the flow field is that of a row of line vortices
(Jacobs & Sheeley 1996). Thus the correct value of C for intermediate Atwood
numbers is uncertain. Following the suggestion of Sadot et al., we use C = 1/3π
for our Atwood number of 0.6. Note that (10) provides separate bubble and spike
growth rates, where the plus sign is used for the bubble velocity and the minus for
the spike. Thus the overall velocity is given by v = (vb + vs)/2. Figure 14 also shows
a curve corresponding to Sadot et al.’s model (10), which provides the best fit of the
experimental data. Thus the 1/t dependence appears to be a necessary ingredient to
achieve good late-time agreement.

5. Conclusions
Use of the novel method for interface generation developed by Jones & Jacobs

(1997) enables advanced visualization techniques, such as PLIF imaging, of the
Richtmyer–Meshkov instability in a shock tube environment. In this study PLIF
images have been captured of the developing instability from the initial sinusoidal
perturbation stage, through the nonlinear growth regime, and into turbulence. The
quality and reproducibility of the images provided by this technique are well beyond
that of all previous single-interface RM experiments, and reveal for the first time
details of the RM instability in a shock tube environment, such as the secondary
instability of the vortex cores and the small-scale features resulting from reacceleration
by the reflected shock and expansion waves.

Early-time measurements of the growth rate are in good agreement with Richtmyer’s
(1960) incompressible model when combined with Brouilette & Sturtevant’s (1994)
diffuse-interface correction. The experimental results differ from the theoretical model
by less than 7% in the Ms = 1.21 case, and by less than 3% in the Ms = 1.11
experiments. In addition, very good agreement is also attained with the nonlinear
models of Zhang & Sohn (1997) and Sadot et al. (1998). The model of Sadot et
al. (1998) agrees best with the data owing to the fact that it captures the generally
accepted 1/t behaviour of the growth rate at late times. However, it suffers from the
fact that it is at least partially empirical in that it contains parameters that must be
extracted from experiments or calculations.

Comparison of images from the Ms = 1.11 and Ms = 1.21 sequences reveal a signifi-
cant increase in the amount of mixed fluid in the higher Mach number experiments,
suggesting that a mixing transition, similar to that observed in other shear flows, has
occurred. However, because the turbulence in this case is produced as a result of
interaction with both reflected shock and expansion waves the conditions necessary
for this transition to occur are difficult to quantify. Note that an appropriate Reynolds
number is difficult to define in this case because the complexity of both the interface
and the acceleration history precludes the determination of appropriate length and
velocity scales.
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